This course introduces the pivotal components of deep learning. You learn how to build deep feedforward, convolutional, recurrent networks, and variants of denoising autoencoders. The neural networks are used to solve problems that include traditional classification, image classification, and sequence-dependent outcomes. The course contains a healthy mix of theory and application. Hands-on demonstration and practice problems are included to reinforce key concepts. Hyperparameter search methods are described and demonstrated to find an optimal set of deep learning models. Transfer learning is covered because the emergence of this field has shown promise in deep learning. Lastly, you learn how to customize a SAS deep learning model to research new areas of deep learning.
Máme dostatečnou flexibilitu, takže vybírat můžete jak prezenční termíny, tak online kurzy.
Zkuste živý kurz virtuálněMachine learners and those interested in deep learning, computer vision, or natural language processing
Before attending this course, you should have at least an introductory-level familiarity with basic neural network modeling ideas. You can gain this neural network modeling knowledge by completing either the Neural Networks: Essentials or Neural Network Modeling course. Previous SAS software experience is helpful but not required.
V čem jsou naše reference výjimečné? Nejsou to jednorázové akce. K nám se lidé vrací rádi a nezavírají před námi dveře.
Podívejte se na úplný seznam referenčních klientů, kteří na nás nedají dopustit.
Jsme vám k dispozici na telefonním čísle +420 222 553 101 vždy od pondělí do pátku: 9:00 - 17:00.
Chcete získat dárek k narozeninám?