Managing Models in SAS(R) Viya(R)

This applied, hands-on course teaches you how to manage models through their useful life cycle. You start by creating a modeling project, and then add and compare models to it so you can identify a champion model. The course uses models that are created using SAS Advanced Analytics capabilities and Python and R languages. The course also shows how to implement procedures that ensure that model governance and oversight approval is being followed by implementing workflow.  You learn how to test a model in the production environment to which it will be deployed. After the model test runs successfully, you learn how to schedule the model to run automatically. Further, the course shows how to measure and monitor the ongoing performance of model accuracy over time. The performance monitoring process will also be scheduled to run automatically in class

Virtual Training nebo e-Learning?

Máme dostatečnou flexibilitu, takže vybírat můžete jak prezenční termíny, tak online kurzy.

Zkuste živý kurz virtuálně

Target group

IT staff who are involved in data preparation and scoring; modelers who create and test models; and business analysts who are consumers of the model, as well as business analysts or consultants who are responsible for integrating models, business rules, and rule flows into operational processes

Target group

Course structure

Why Manage Models?

  • Overview.
  • Managing reports and pages.
  • SAS Viya architecture.

A Project/Model Workshop

  • Introduction.
  • Project setup.
  • Import models.
  • Model properties.

Model Deployment

  • Introduction.
  • Publishing models.
  • How to define a CAS publishing destination.
  • Scoring deployment.
  • Creating a Model Performance report.
  • Scheduling a performance job.
  • Model retraining (self-study).

Scoring SAS Visual Text Analytics Models (Optional)

  • Introduction.
  • SAS Visual Text Analytics.
  • Registering Visual Text Analytics models in the Visual Text Analytics Repository.
  • Scoring and exploring concept models.
  • Scoring and exploring sentiment models.
  • Scoring and exploring topic models.
  • Scoring and exploring category models.

Appendix

  • Model repositories.
  • How to fit a scoring script for model containerization.
  • Prepare an R model and PMML file.
  • Calculate fit statistics for an R model.
  • Feature contribution index.
  • Model usage summary.

Prerequisites

Before attending this course, you should be familiar with data mining concepts and predictive models.

Prerequisites

Jak kurz hodnotí absolventi?

V čem jsou naše reference výjimečné? Nejsou to jednorázové akce. K nám se lidé vrací rádi a nezavírají před námi dveře.

Podívejte se na úplný seznam referenčních klientů, kteří na nás nedají dopustit.

Vaše hodnocení
*****

Chcete to připravit na míru? Kontaktujte nás!

Zavolejte nám a my vám poradíme.

Jsme vám k dispozici na telefonním čísle +420 222 553 101 vždy od pondělí do pátku: 9:00 - 17:00.

*položky označené hvězdičkou jsou povinné

Chcete získat dárek k narozeninám?