Network Analysis and Network Optimization in SAS(R) Viya(R)

This course provides a set of network analysis (graph theory) and network optimization solutions using the NETWORK and OPTNETWORK procedures in SAS Viya. Real-world applications are emphasized for each algorithm introduced in this course, including using network analysis as a stand-alone unsupervised learning technique, as well as incorporating network analysis and optimization to augment supervised learning techniques to improve machine learning model performance through input/feature creation.

Virtual Training nebo e-Learning?

Máme dostatečnou flexibilitu, takže vybírat můžete jak prezenční termíny, tak online kurzy.

Zkuste živý kurz virtuálně

Target group

Anyone interested in learning to incorporate network analysis and network optimization to provide solutions and solve real-world business challenges, including data scientists, business analysts, statisticians, and other quantitative professionals. Managers, directors, and leaders with a quantitative background are also encouraged to attend to learn how network analysis and optimization can be integrated into a broader portfolio of data science and machine learning applications.

Target group

Course structure

Concepts in Network Analysis

  • Introduction.
  • Network-level concepts.
  • Adjacency matrices and degree centrality.
  • Introduction to the NETWORK procedure.

Centrality Measures

  • Introduction.
  • Eigenvector centrality.
  • Betweenness and closeness centrality.
  • Influence centrality (self-study).
  • Hub and authority centrality.
  • PageRank centrality.

Analysis of Subnetworks

  • Connected and biconnected components.
  • Maximal cliques.
  • Community detection.
  • Paths, shortest paths, and cycles.
  • Pattern matching.

Bipartite Networks

  • Introduction to bipartite networks.
  • Network projection.

Network Optimization

  • Introduction.
  • Linear assignment problem.
  • Minimum spanning tree.
  • Maximum spanning tree (self-study).
  • Traveling salesman problem.
  • Minimum cost network flow (self-study).

Appendix A: Network Optimization Using the OPTMODEL Procedure

  • Total unduplicated reach and frequency (TURF) analysis.
  • Multiple traveling salesman problem (mTSP).
  • Minimum cost network flow.

Appendix B: Centrality Measures Using the IML Action Set

  • Introduction.
  • Eigenvector centrality using IML.
  • Hub and authority centrality using IML.
  • PageRank centrality using IML.

Prerequisites

In order to complete practices with classroom software, attendees should have basic familiarity with statistics and mathematical concepts and be comfortable programming in SAS using DATA steps. Experience using macros is helpful, but not required.

Prerequisites

Jak kurz hodnotí absolventi?

V čem jsou naše reference výjimečné? Nejsou to jednorázové akce. K nám se lidé vrací rádi a nezavírají před námi dveře.

Podívejte se na úplný seznam referenčních klientů, kteří na nás nedají dopustit.

Vaše hodnocení
*****

Chcete to připravit na míru? Kontaktujte nás!

Zavolejte nám a my vám poradíme.

Jsme vám k dispozici na telefonním čísle +420 222 553 101 vždy od pondělí do pátku: 9:00 - 17:00.

*položky označené hvězdičkou jsou povinné

Chcete získat dárek k narozeninám?