A typical organization loses an estimated 5 of its yearly revenue to fraud. This course shows how learning fraud patterns from historical data can be used to fight fraud. The course discusses the use of supervised learning (using a labeled data set), unsupervised learning (using an unlabeled data set), and social network learning (using a networked data set). The techniques can be applied across a wide variety of fraud applications, such as insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and counterfeiting. The course provides a mix of both theoretical and technical insights, as well as practical implementation details. During the course, the instructor reports extensively on his recent research insights about the topic. Various real-life case studies and examples are presented for further clarification.
Máme dostatečnou flexibilitu, takže vybírat můžete jak prezenční termíny, tak online kurzy.
Zkuste živý kurz virtuálněFraud analysts, data miners, and data scientists; consultants working in fraud detection; validators auditing fraud models; and researchers in financial services companies, banks, insurance companies, government institutions, health-care institutions, and consulting firms
Before attending this course, you should have a basic knowledge of statistics, including descriptive statistics, confidence intervals, and hypothesis testing.
V čem jsou naše reference výjimečné? Nejsou to jednorázové akce. K nám se lidé vrací rádi a nezavírají před námi dveře.
Podívejte se na úplný seznam referenčních klientů, kteří na nás nedají dopustit.
Jsme vám k dispozici na telefonním čísle +420 222 553 101 vždy od pondělí do pátku: 9:00 - 17:00.
Chcete získat dárek k narozeninám?