Fraud Detection Using Descriptive, Predictive, and Social Network Analytics

A typical organization loses an estimated 5 of its yearly revenue to fraud. This course shows how learning fraud patterns from historical data can be used to fight fraud. The course discusses the use of supervised learning (using a labeled data set), unsupervised learning (using an unlabeled data set), and social network learning (using a networked data set). The techniques can be applied across a wide variety of fraud applications, such as insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and counterfeiting. The course provides a mix of both theoretical and technical insights, as well as practical implementation details. During the course, the instructor reports extensively on his recent research insights about the topic. Various real-life case studies and examples are presented for further clarification.

Virtual Training nebo e-Learning?

Máme dostatečnou flexibilitu, takže vybírat můžete jak prezenční termíny, tak online kurzy.

Zkuste živý kurz virtuálně

Target group

Fraud analysts, data miners, and data scientists; consultants working in fraud detection; validators auditing fraud models; and researchers in financial services companies, banks, insurance companies, government institutions, health-care institutions, and consulting firms

Target group

Course structure

Introduction

Fraud Detection

  • The importance of fraud detection.
  • Defining fraud.
  • Anomalous behavior.
  • Fraud cycle.
  • Types of fraud.
  • Examples of insurance fraud and credit card fraud.
  • Key characteristics of successful fraud analytics models.
  • Fraud detection challenges.
  • Approaches to fraud detection.

Data Preprocessing

  • Motivation.
  • Types of variables.
  • Sampling.
  • Visual data exploration.
  • Missing values.
  • Outlier detection and treatment.
  • Standardizing data.
  • Transforming data.
  • Coarse classification and grouping of attributes.
  • Recoding categorical variables.
  • Segmentation.
  • Variable selection.

Supervised Methods for Fraud Detection

  • Target definition.
  • Linear regression.
  • Logistic regression.
  • Decision trees.
  • Ensemble methods: bagging, boosting, random forests.
  • Neural networks.
  • Dealing with skewed class distributions.
  • Evaluating fraud detection models.

Unsupervised Methods for Fraud Detection

  • Unsupervised learning.
  • Clustering approaches: hierarchical clustering, k-means clustering, self-organizing maps.
  • Peer group analysis.
  • Break point analysis.

Social Networks for Fraud Detection

  • Social networks and applications.
  • Is fraud a social phenomenon?
  • Social network components.
  • Visualizing social networks.
  • Social network metrics.
  • Community mining.
  • Social-network-based inference (network classifiers and collective inference).
  • From unipartite toward bipartite graphs.
  • Featurizing a bigraph.
  • Fraud propagation.
  • Case study.

Fraud Analytics: Putting It All to Work

  • Quantitative monitoring: backtesting, benchmarking.
  • Qualitative monitoring: data quality, model design, documentation, corporate governance.

Prerequisites

Before attending this course, you should have a basic knowledge of statistics, including descriptive statistics, confidence intervals, and hypothesis testing.

Prerequisites

Jak nás hodnotí

V čem jsou naše reference výjimečné? Nejsou to jednorázové akce. K nám se lidé vrací rádi a nezavírají před námi dveře.

Podívejte se na úplný seznam referenčních klientů, kteří na nás nedají dopustit.

Vaše hodnocení
*****

Nejste si jisti, zda je tento kurz pro vás?

Zavolejte nám a my vám poradíme.

Jsme vám k dispozici na telefonním čísle +420 222 553 101 vždy od pondělí do pátku: 9:00 - 17:00.

*položky označené hvězdičkou jsou povinné

Chcete získat dárek k narozeninám?