Decision trees and tree-based ensembles are supervised learning models used for problems involving classification and regression. This course covers everything from using a single tree to more advanced bagging and boosting ensemble methods in SAS Viya. The course includes discussions of tree-structured predictive models and the methodology for growing, pruning, and assessing decision trees, forest and gradient boosting models. The course also explains isolation forest (an unsupervised learning algorithm for anomaly detection), deep forest (an alternative for neural network deep learning), and Poisson and Tweedy gradient boosted regression trees. In addition, many of the auxiliary uses of trees, such as exploratory data analysis, dimension reduction, and missing value imputation, are examined, and running open source in SAS and running SAS in open source are demonstrated.
Máme dostatečnou flexibilitu, takže vybírat můžete jak prezenční termíny, tak online kurzy.
Zkuste živý kurz virtuálněPredictive modelers and data analysts who want to build decision trees and ensembles of decision trees using SAS Visual Data Mining and Machine Learning in SAS Viya
Before attending this course, you should have the following:
V čem jsou naše reference výjimečné? Nejsou to jednorázové akce. K nám se lidé vrací rádi a nezavírají před námi dveře.
Podívejte se na úplný seznam referenčních klientů, kteří na nás nedají dopustit.
Jsme vám k dispozici na telefonním čísle +420 222 553 101 vždy od pondělí do pátku: 9:00 - 17:00.
Chcete získat dárek k narozeninám?